
1. INTRODUCTION: 
The improvement of a latest solar cells technology is 
focusing for system power applications. The Dye-Sensitized 
Solar Cells (DSSCs) is a most fascinating and promising 
skill in field of the photovoltaics conversion. The basics 
principle of dye-sensitized solar cell is that it converts solar 
electromagnetic energy in to electrical energy.  The Dye-
sensitized solar cells (DSSCs) are a striking alternative in 
favor of high-efficiency as well as low-cost power creation 
for energy source [1]. Aesthetic properties like transparency 
and colours of solar cells, and performance properties like 
the attainable output voltage and current density by 
selecting the suitable nanostructured metal oxide (generally 
TiO2), sensitizer, and redox shuttle [2, 3,4]. Sensitizer is the 
most critical components in a DSC, light-harvesting 
properties of the DSC also determines the  component as 
well as maintain the relations involving the redox shuttle 
with the TiO2  [5,6].  

 

 

In solar cell technology, the light trapping or harvesting 
techniques has been broadly investigated due to the 
necessities for the reduction of active material thickness. It 
is also valuable to rise above the inherent restrictions 
related with diffusional path length for charge carriers 
along with the charge-carrier recombination happening 
during interfaces.[ 7-17 ] when the thickness of the film of a 
light absorbing active layer reduces with that the Light 
absorbance also reduces, which consequential low down 
power-conversion efficiency. For this reason light trapping 
or harvesting techniques have been testing to harvest light 
efficiently. [10–17] Furthermore, thin-film photovoltaic 
devices which have limited film thickness such as dye-
sensitized solar cells (DSSCs) and organic photovoltaics 
(OPVs), the light-trapping technique is very valuable [18, 
19]. 

2. OPERATIONAL PRINCIPLE OF DYE-SENSITIZED 
SOLAR CELLS 

 The schematic representation of working principle of DSSC 
is shown in figure (1). The dye-sensitized  on which a wide 
band gap semiconductor (TiO2, SnO2, ZnO, etc) is deposited 
on the surface of photoanode and a monolayer of dye is 
adsorbed on the surface of semiconductor layer, an 
electrolyte like tri-iodide and iodide redox couple  and 
finally conductive substrate  is the cathode  which  is 
covered  by a catalyst layer (like Pt, carbon, etc). The ultra-
violet light is absorbed by wide band gap semiconductor. 
In the solar spectrum, more amount of visible range of light 
is absorbed by the dye molecule and thus makes efficient 
use of the sunlight [6]. The nanoparticles of the 
semiconductor supply a huge surface region for adsorption 
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of the dye on it, primary to absorption of more quantity of 
light by the photoanode. On the other hand, these 
nanoparticles of the semiconductor have to be sintered 
together in order to have electronic contact between the 
particles and allow electronic conduction through the layer. 
The porous semiconductor (TiO2) layer is made on a 
conducting glass substrate (F:SnO2/FTO coated glass), 
which is externally connected to the cathode. The cathode is 
again a conductive glass substrate with a catalyst such as Pt 
deposited on it. The dye molecules commonly used [20, 21, 
22]. 

                        Figure 1: Schematics of DSSC Structure 

In dye-sensitized solar cells, three are major barriers which 
preclude current for achieving greater efficiencies: 

 Electrons to move down to the TCO substrate is 
not easy because the recombination losses in the 
extremely disordered nanoporous TiO2 layer.  

 Major potential losses arises when electrons are 
transferred from the redox couple to dye 
molecules that consequential the open circuit 
voltage (VOC) become poorer, 

 In the near-infrared range of the spectrum, there 
is the weak absorption of photon that restricting  
the short circuit current density ( JSC), 

These are the three major problems in which most of the 
research work is going on and many of the research paying 
attention on solving the dilemma in DSSCs. In this paper, 
we focus only on the content related to collection of charge 
and light. This review aims to demonstrate that the DSC 
performance is closely related to the structure of 
photoelectrode film. A rational design of the photoelectrode 
structure may lead to optimal light harvesting and electron 
transport. Aside from the creation of new organic dyes that 
is a direct way of improving the DSC efficiency, the 
tailoring of materials for a defined purpose is herein also 
emphasized to be an important way of speeding up the 
development of DSSCs. 

3.  PRESENT DSSC RESEARCH AND DEVELOPMENT:  
 
3.1. Nanostructured photoelectrodes:  

One of the most challenging approaches for the 
improvement of charge collection is the replacement of the 
disordered nanoporous TiO2 layer by a nanostructured 
photoelectrode [23]. In Dye-sensitized solar cells, 
Nanotechnology offers to investigate materials as well as 
make different nanostructures. This review work on DSSCs 
categorizes by means of different nanostructured photo-
electrodes layer: Firstly nanoparticles for dye-adsorption 
which provide wide surface area to photoelectrode layer 
[24-32]. Secondly 1D nanostructures like nanowires as well 
as nanotubes, which offer shortest possible trail for electron 
transport and which is possible more quicker than 
nanoparticle layers and Nanotube arrays which have the 
conversion efficiencies in between 6–8% [33- 38].Thirdly 
core-shell like structures, though with a deliberation by 
forming a coating layer which are obtained from the 
nanoparticles is supportive to decrease charge 
recombination [39, 40]. Lastly 3D nanostructures like 
nanotetrapods wherein oxide aggregates are most 
challenging structure which gives higher efficiency [42,43]. 
It generates light scattering along with the large surface 
area, so that photoelectrode layer become much thinner and 
it also decreases the charge recombination in DSSCs [32].  
 
 3.2. Nano-patterned FTO Electrodes:  

In optoelectronic devices, transparent conductors (TCs) are 
one of the most essential factors. It is also valuable for 
optimization of the device performance throughout 
enhanced light trapping in nanoscale engineering [44]. FTO 
(Fluorine-doped tin oxide) by means of nanoimprint 
lithography was patterned with the shape of periodic range 
of nanopillars as well as nanolines of pitch size of around 
700 nm and reactive ion was done by etching by means of 
environmentally friendly gases. Wavelength of the incident 
light corresponding to Periodic structures of pitch size will 
offer efficient lights scattering, which is also suitable to 
enlarge the optical path length of light through diffracting 
incident light and it is also propagating enormously oblique 
angles in the adjacent active layer. By the designed periodic 
structure, photon momentum is able to scattered away as of 
the specular direction [46-48]. The patterned FTO which 
was using on dye sensitized solar cells (DSSCs) was 
demonstrated better feat in fill factor as well as power 
conversion efficiency (PCE), and that can be recognized to 
enhance light absorption in the range 400−650 nm. 
Experimentally, the cell of 4 μm TiO2 layer in the 
wavelength range of 400−650 nm which offer outcome of 
around 2−5% improvement of IPCE% efficiency. In 
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patterned electrodes, both JSC and VOC are found to be 
higher and which resulting in improved power conversion 
efficiency as matches up to to the unpatterned electrodes 
[47].  

 

Figure 2: (a) Graph plotted for Current density and Potential 
characteristics of the patterned (solid line i−iv) and unpatterned 
(dashed line v to viii) of FTO/TiO2/N3 in the presence of I−/I3− redox 
mediator in acetonitrile under different light power density for the 4 μm 
thick TiO2 electrodes, lastly (b) Incident photon-to-current conversion 
efficiency (IPCE%) for patterned (ii) and unpatterned (i) [47].  

3.3. Micropatterned 3D Pyramidal Photoanodes: 

 wooh et al in 2013 has developed a 3D photoanode 
structure which is extremely efficient and easy light 
trapping approach to improve the energy conversion 
efficiency of DSSCs. The soft molding technique with poly 
(dimethyl siloxane) PDMS molds was used to prepare the 
3D TiO2 Photoanodes structures [49]. In the present study, 
Pyramid-shaped TiO2 photoanode gives the highest light 
absorbance, rather than other geometries of photoanode, 
and thus the performance of photocurrent-voltage became 
excellent. By varying the structural design of the TiO2 
photoanodes from 2D flat surfaces to 3D pyramids, more 
than 20% absorption of light on the surface have been 
achieved due to the total reflection of incident light on the 
surfaces of the pyramid shape structures and enhancement 
of photocurrent in DSSCs [50-51]. As the result, the 
enhancement of photocurrent and power conversion 
efficiency up to 40% and 36% for the efficient combination 
approach of the 3D random pyramid-patterned photoanode 
in the company of an additional scattering layer, and it is 
match up to the assessments for a 2D flat photoanode, are 
achieved from the increase of the light path length by the 
reflection of the scattered light on the tilted facets of the 
pyramid structures [52]. 

3. 4. Semi-closed tubular light-trapping geometry: 

In this studied, a chain of works of DSSC has been reported 
for the enhancement of the PCE under irradiation. Most of 
the works had done for common cells in planar geometry. 

The circumventing irradiated light loss is one of the major 
approaches. Zeng et al. in 2015 has developed geometrical 
approached for dye sensitized solar cell which is semi-
closed tubular light-trapping geometry to enhance it power 
conversion efficiency in broad light intensity range [53]. 

 

Figure 3: a) A snap shown TiO2 photoanodes having N719 dyes for 
three different geometries like flat (2D), prism-patterned, and pyramid-
patterned. b) A graph for the characteristic of  Light-absorption of 2D 
and 3D TiO2 photoanodes for different Geometries, c) Graph plotted 
between photocurrent and photovoltage characteristics of DSCs with 
different geometries of photoanodes, measured under 1 sun 
illumination (AM 1.5 and 100 mW cm−2) with shading masks (active 
area: 0.25 cm2). d) The light path results from the optical simulations 
with different photoanode geometries with a light source of 650 nm 
wavelength [52]. 

4. DISCUSSION:  

In summary, light trapping or harvesting strategy has 
explored in order to increase the absorption of incident 
light on the photoanode of DSSCs. This review aims to 
demonstrate that the DSC performance is closely related to 
the structure of photoelectrode film. A rational design of 
the photoelectrode structure may lead to optimal light 
harvesting and electron transport. To stabilize the power 
conversion efficiency in dye-sensitized solar cells different 
light trapping geometries, and for the enhancement of light 
absorption, TiO2 photoanode geometries like flat, pillar, 
prism has been used. One more approach for better charge 
collection is the alternative of the messy nanoporous TiO2 
layer by nanostructured photoelectrodes like nanotubes, 

Figure 4: (a). Graph Plotted for the PCE vs light incident angle for 
TCells, by different tube length, with 3.3 mm PTL thickness. (b). 
Corresponding J-V curves [54]. 
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nanowires. The main purpose of these nanostructures is to 
increase charge collection by the involvement of a direct 
pathway for electron transport and also squashed 
recombination loss. By changing the structural design of the 
TiO2 photoanodes, more than 20% increment in light 
absorption along with photocurrent of DSSCs has been 
achieved. 
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